pyspark.sql.Catalog.cacheTable#
- Catalog.cacheTable(tableName, storageLevel=None)[source]#
- Caches the specified table in-memory or with given storage level. Default MEMORY_AND_DISK. - New in version 2.0.0. - Parameters
- tableNamestr
- name of the table to get. - Changed in version 3.4.0: Allow - tableNameto be qualified with catalog name.
- storageLevelStorageLevel, optional
- storage level to set for persistence. - Changed in version 3.5.0: Allow to specify storage level. 
 
 - Examples - >>> _ = spark.sql("DROP TABLE IF EXISTS tbl1") >>> _ = spark.sql("CREATE TABLE tbl1 (name STRING, age INT) USING parquet") >>> spark.catalog.cacheTable("tbl1") - or - >>> spark.catalog.cacheTable("tbl1", StorageLevel.OFF_HEAP) - Throw an analysis exception when the table does not exist. - >>> spark.catalog.cacheTable("not_existing_table") Traceback (most recent call last): ... AnalysisException: ... - Using the fully qualified name for the table. - >>> spark.catalog.cacheTable("spark_catalog.default.tbl1") >>> spark.catalog.uncacheTable("tbl1") >>> _ = spark.sql("DROP TABLE tbl1")